

ROYAL AIR FORCE

1918

OCONSCIENCES OCONS

ZM400

2018

The aim of this resource is to give students the opportunity to investigate how science, technology, engineering and mathematics (STEM) is used when planning a mission.

Curriculum links

England					
Activity	Key Stage	Subject	National Curriculum		
Time to plan	KS2	Mathematics	Number: addition and subtraction		
			Number: number and place value Number: fractions		
Time to plan	KS3	Mathematics	Working mathematically: solve problems		
Scotland					
Activity	Subject	Торіс	Experiences and outcomes		
Time to plan	Numeracy and mathematics	Number and n Time	umber process MNU 2-03a, MNU 3-03a MNU 2-10c, MNU 3-10a		
Wales					
Activity	Key Stage	Subject	National Curriculum		
Time to plan	KS2	Mathematics	Using number skills: use number facts and relationships		
			Using number skills: fractions, decimals, percentages and ratio		
Time to plan	KSB	Mathematics	Developing numerical reasoning: identify processes and connections		
Northern I	reland				
Activity	Key Stage	Subject	National Curriculum		
Time to plan	KS2	Mathematics and numeracy	Number: understanding number and number notation		

(bal

Preparation

- Ensure all materials and equipment needed is available well in advance of the session.
- A full risk assessment should be conducted prior to the session.
- This session is expected to last 60 minutes.

This resource has been linked to the Engineering Habits of Mind (EHoM). For more information about the EHoM please see the information sheet provided or www.raeng.org.uk/ltbae.

Resource list

For this activity, you will need the following per group:

- Copy of logistics challenge support sheet one
- >>> Copy of logistics challenge support sheet two
- >> Paper
- Pencil or pen

Logistics challenge

Operation Cheshire

Operation Cheshire, the operation to deliver aid to inhabitants of Sarajevo, the capital of Bosnia and Herzegovina, during the civil war in the early 1990s was the longest running airlift in the RAF's history. Road and rail networks had been destroyed or cut off by the conflict so delivering aid by air was the only way to ensure it was delivered to those who needed it. For almost four years the RAF used Hercules

C130 aircraft to deliver supplies to those trapped by the fighting.

MoD/Crown copyright 2016

By the end of the operation the RAF had delivered over 26,000 tonnes of supplies.

TIME TO PLAN

You are a logistics team working for the RAE to plan and deliver humanitarian aid to the people of Sarajevo.

You need to use all the information to work out a movement plan that demonstrates how you will deliver all the essential equipment from RAF Leeming to Sarajevo. Delivering humanitarian aid to a war zone requires a different approach to delivering aid in the aftermath of a natural disaster.

To assist with your mission, you have been given access to a Hercules C130s aircraft.

Partone

One of the key supplies that civilians will need is water. It is currently recommended that a person drinks 1.2 litres of water a day.

If you are delivering aid for 5,500 people to last 20 days, how much water will you need to deliver?

Step 1: calculate how much water one person will need for 10 days.

Answers provided to STEM activity leader

Step 1:

For 5 days, a person would need 6 litres of water

Step 2:

5,500 people would need 66000 litres

Using the long multiplication method

5 5 0 0

0 0

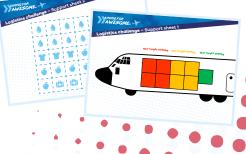
0

5

Step 2: calculate how much water 5,500 people would need.

Part two

This much water will take up too much space on an aircraft, so instead of delivering water the RAF deliver water purification systems.


Next, you must pack your aircraft. You will be delivering emergency lifesaving aid, including food, water purification systems, healthcare and clothes. Complete the table below and use logistics challenge support sheet one to work out the best way to pack your aircraft to make the fewest journeys.

Aircraft information

Flying speed:	330mph		
Maximum load:	20,500kg		
Pallet space:	9 pallets		
Range:	2400 miles		
Time to load:	5 minutes per 1000 kg of weight		
Time to unload:	10 minutes per 1000 kg of weight		
Time to refuel:	2 hours		
•			

Aid items to be sent:

			•	•	
Item	Quantity to be sent	Number of items per pallet	Number of pallets	Weight per pallet (kg)	Total weight (kg)
Water purification	360	30	12	3000	36000
f Food	10000	1000	10	2000	20000
Medicine	1000	500	2	1000	2000
Clothes	500 bags	200 bags	3	500	1500
			•		

Answers provided to STEM activity leader

For this task, each group should have a copy of logistics challenge support sheet one and one pack of equipment cards. More cards can be made by photocopying logistics challenge support sheet two.

It will take three flights to deliver all the aid, and the aircraft can be packed as below:

Water purification	Water purification	Clothes	Food	•	•Medicine		
Water purification	Food	Food	Water purifica	ation	• • •		
Total weight = 1950	Dkg	•••		• •		•	•
Water purification	Water purification	Clothes	Food	••	Medicine	•	
Water purification	Food	Food	Water purifica	ation	• • •		
Total weight = 1950	Okg					•	•
Water purification	Water purification	Clothes	Food	• •	Food		
Water purification	Food	Food	Water purification	ation	• • •		

Total weight = 20500kg

Logistics challenge

Part three

Now you must work out the time it will take for you to deliver the all equipment and return to base.

The distance from RAF Leeming to Sarajevo is 1155 miles

Hints:

- *break each stage of the journey down into time to load the aircraft, time to fly and time to unload.*
- bo not forget to refuel your aircraft after 2400 miles
- it might be easier to calculate the time to pack the aircraft in minutes first and then convert to time in hours. Remember; there are 60 minutes in an hour.
- >>> to calculate the flight time, use the equation speed distance + time.

What can you do to reduce the total delivery time?

Answers provided to STEM activity leader

The total mission time is 39 hours, 52 minutes 30 seconds. This can be reduced to 36 hours, 32 minutes 30 seconds by loading and refuelling the aircraft at the same time. Pupils will have a different total mission time if they have loaded the aircraft differently.

Flight one	Flight two	Flight three		
Load time = 1 hr 37 mins 30 sec	Refuel time: 2 hours	Refuel time: 2 hours		
(19500 ÷ 1000) × 5 minutes =	Load time = 1 hr 37 mins 30 sec	Load time = 1 hr 42 mins 30 sec		
97.5 minutes Flight time = 3 hrs 30 mins	(19500 ÷ 1000) × 5 minutes = 97.5 minutes	(20500 ÷ 1000) × 5 minutes = 102.5 minutes		
time = distance = 1155	Flight time = 3 hrs 30 mins	Flight time = 3 hrs 30 mins		
speed 330	time = $\frac{\text{distance}}{\text{distance}} = \frac{1155}{1155}$	time = distance = 1155		
= 3.5 hours	speed 330	speed 330		
Unload time = 3 hrs 15 mins	= 3.5 hours	= 3.5 hours		
19500 ÷ 1000 × 10 minutes	Unload time = 3 hrs 15 mins	Unload time = 3 hrs 25 mins		
= 195 minutes Return flight time = 3 hrs 30 mins	(19500 ÷ 1000) × 10 minutes = 195 minutes	(20500 ÷ 1000) × 10 minutes = 205 minutes		
time = $\frac{\text{distance}}{\text{distance}} = \frac{1155}{222}$	Return flight time = 3 hrs 30 mins	Return flight time = 3 hrs 30 min		
speed 330	time = $\frac{\text{distance}}{\text{distance}} = \frac{1155}{220}$	time = $\frac{\text{distance}}{\text{distance}} = \frac{1155}{\text{distance}}$		
= 3.5 hours	speed 330	speed 330		
Total = 11 hours 52	= 3.5 hours	= 3.5 hours		
minutes 30 seconds	• Total = 13 hours 52	Total = 14 hours 7 minutes		

minutes 30 seconds

Total = 14 hours 7 minutes 30 seconds

Logistics challenge

Royal Academy of Engineering

As the UK's national academy for engineering, we bring together the most successful and talented engineers for a shared purpose: to advance and promote excellence in engineering.

We have four strategic challenges:

Make the UK the leading nation for engineering innovation

Supporting the development of successful engineering innovation and businesses in the UK in order to create wealth, employment and benefit for the nation.

Address the engineering skills crisis

Meeting the UK's needs by inspiring a generation of young people from all backgrounds and equipping them with the high quality skills they need for a rewarding career in engineering.

Position engineering at the heart of society

Improving public awareness and recognition of the crucial role of engineers everywhere.

Lead the profession

Harnessing the expertise, energy and capacity of the profession to provide strategic direction for engineering and collaborate on solutions to engineering grand challenges.

The RAF 100 Youth & STEM programme has been designed to engage and inspire young people by building their interest in engineering and technical career pathways.

From cyber specialists to aerospace, aviation, electronics and mechanical disciplines, the RAF is committed to using our centenary celebrations to extend opportunity to all and to encourage greater diversity in this critical area of national skills shortages.

Royal Academy of Engineering Prince Philip House, 3 Carlton House Terrace, London SW1Y 5DG

Tel: +44 (0)20 7766 0600 www.raeng.org.uk Registered charity number 293074 Front/back cover images: MoD/Crown copyright The images in this resource are licensed under the Open Government Licence v3.0. To view this licence, visit: www.nationalarchives.gov.uk/doc/open-government-licence

Please recycle this resource (the cover is treated with recyclable laminate)